Untersuchung der innerstädtischen Luftqualität, inbesondere das "NO₂-und Partikel-Problem" an einer Messstation in Wuppertal

Ralf Kurtenbach

- O Stickoxide (NO_x=NO+NO₂) wichtige Substanzklasse
- O Stickoxide, insbesondere NO₂ und Folgeprodukte (HONO, HNO₃, PAN,...) sind gesundheitsschädlich
- NO₂: Ab 2010 niedriger EU-Jahresmittelwert (Grenzwert) von 40 μg/m³ bzw. max. 18 Überschreitungen des Stundenmittelwertes von 200 μg/m³ pro Jahr
- Stickoxidemissionen (NO_x=NO+NO₂) zu rund 60% aus dem Straßenverkehr (Umweltbundesamt, UBA)
- NO_x-Bildung bei der Verbrennung von fossilen Energieträger (z. B. Benzin oder Diesel)

Umweltseminar 20.05.2014

→ Thermisches NO_x:

$$N_2 + O_2 \xrightarrow{\Delta T (>1000^{O}C)} 2 \text{ NO}$$

$$N_2 + O \leftrightarrow NO + N$$

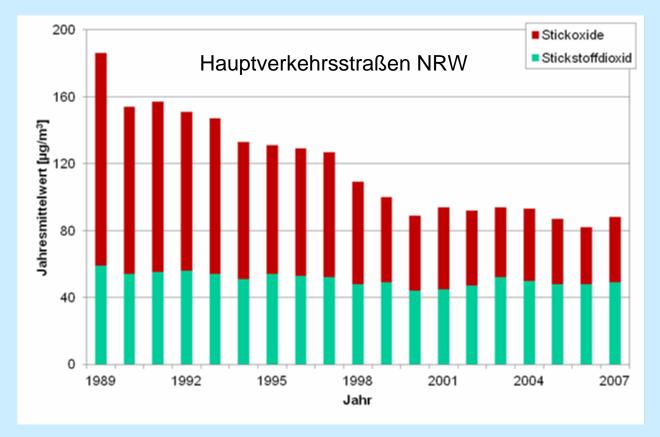
$$N + O_2 \leftrightarrow NO + O$$

(Zeldovich-Mechanismus)

$$N + OH \leftrightarrow NO + H$$

→ Promptes NO_x:

$$CH + N_2 \xrightarrow{\Delta T(>500^{O}C)} HCN + N \rightarrow NO$$


→ Brennstoff (fuel) NO_x:

Umweltseminar 20.05.2014

→ Manteile der drei NO_x-Bildungsmöglichkeiten → Manteile Der drei NO_x-Bildun

Brennstoff	therm. NO _x	BS-NO _x aus flüchtigen Bestandteilen	BS-NO _x aus Koks	Prompt-NO _x
Diesel/Benzin Innermotorisch	90–95	_	_	5–10
Gas	100	_	_	_
Schweröl	40–60	60–40	_	_
Steinkohle Trockenfeuerung	10–30	50–70	20–30	_
Steinkohle Schmelzfeuerung	40–60	30–40	10–20	_
Braunkohle	<10	>80	<10	_

O Emissionsberechnungen (UBA): Rückgang der NO_x-Emissionen aus dem Straßenverkehr zwischen 1990 und 2006 um 50%

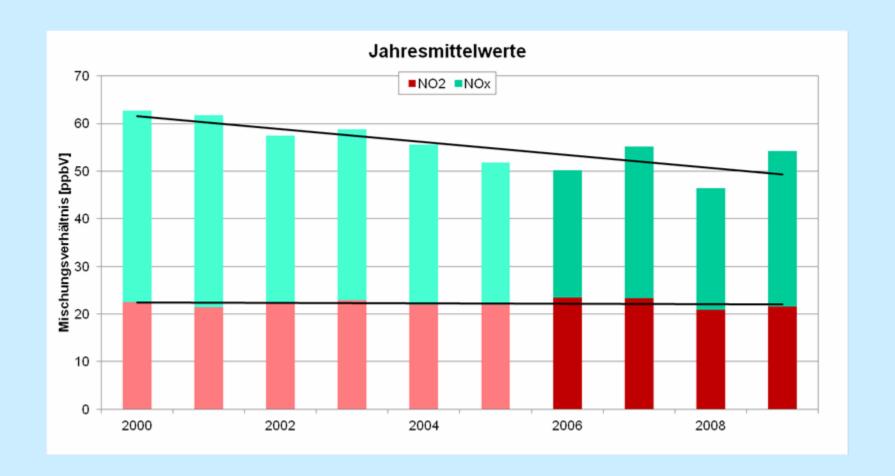
 NO_x-Rückgang wurde auch bei der Immission beobachtet, ist aber zum Stillstand gekommen

Umweltseminar 20.05.2014

Einführung

- NO₂-Immission zeigt diesen Trend aber nicht, warum?
- O Im Jahr 2004 waren 50% der Bevölkerung in europäischen Städten einer weit höher NO₂-Belastung (40 μg/m³) ausgesetzt (European Environmental Agency)
- O Im Jahr 2012 lag der Jahresmittelwert von NO₂ an mehr als der Hälfte der verkehrsnahen Messstationen in Deutschland oberhalb des Jahresgrenzwertes von 40 μg/m³ (UBA)
- Verlängerung der "First" von 2010 auf 2015 mit einem derzeitigen Jahresgrenzwert für NO₂ von 60 μg/m³

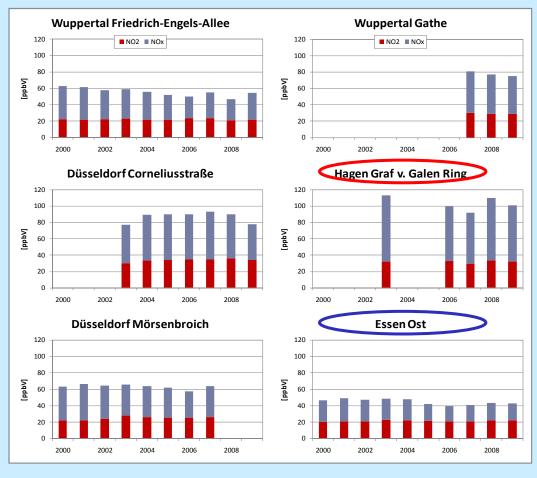
Umweltseminar 20.05.2014


Einführung

- O NO_2 wird primär emittiert (Straßenverkehr), aber auch sekundär in der Atmosphäre aus NO (Straßenverkehr) gebildet: $NO + O_3 \rightarrow NO_2 + O_2$
- O Beurteilung der Effizienz von Maßnahmen zur NO₂-Reduktion nur möglich, wenn der Anteil primäres und sekundäres NO₂ bekannt sind
- → Beobachtung des NO_x- und NO₂-Trends und Bestimmung des primären und sekundären NO₂-Anteils

Seit 2006 Immissionsmessungen von NO, NO₂ und O₃ in Wuppertal durch die BUW in Zusammenarbeit mit dem LANUV-NRW

Umweltseminar 20.05.2014

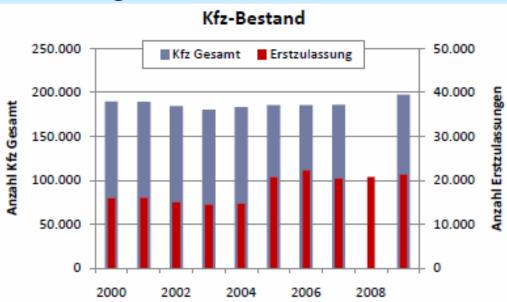


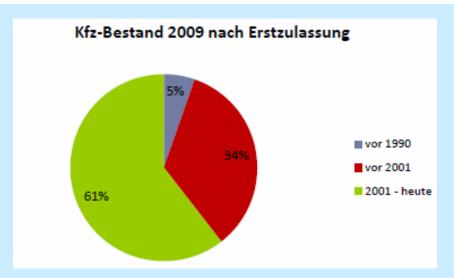
Gleicher Trend wie an anderen Messstationen

Umweltseminar 20.05.2014

Vergleich mit anderen Messstationen in NRW:

- O NO₂-Konzentration in allen dargestellten Städten oberhalb von 20 ppbV (40 μg/m³)
- O Düsseldorf und Hagen: über 30 ppbV
- Starke Unterschiede bezüglich der NO-Konzentration
- O In Hagen 4 x mehr NO als in Essen (Verkehrsbelastung)
- NO₂-Konzentration nicht ausschließlich von Verkehrsaufkommen abhängig
- → Beeinflussung des NO₂-Gehalts durch andere Faktoren

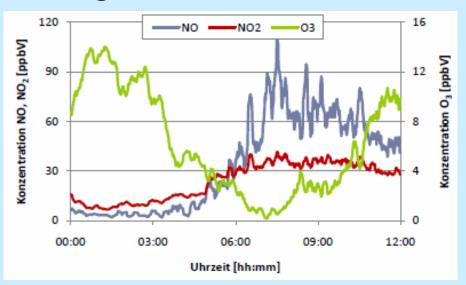


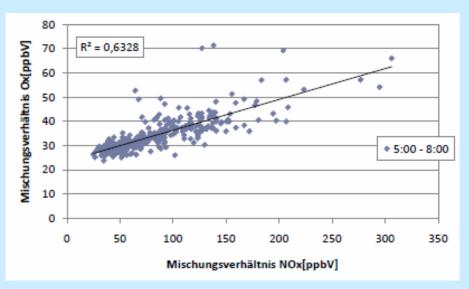

Umweltseminar 20.05.2014

Einfluss des Kfz-Bestands auf die Immissionswerte:

- Kfz-Bestand nahezu unverändert seit 2000
- O Zunahme der Erstzulassung
- 10% aller Kfz wurden im Jahr 2009 zugelassen ("Umweltbzw. Abwrackprämie")
- mehr neue Kfz mit geringerem
 NO_x -bzw. NO₂-Ausstoß (z.B.
 DeNOx-Katalysatoren)
- NO₂-Konzentration seit 2000 nicht gesunken
- Immissionswerte nicht linear mit der Kfz-Emission gekoppelt

Umweltseminar 20.05.2014


- Bestimmung der direkt (primär) emittierten und indirekt (sekundär) gebildeten NO₂-Menge
- Messung des direkt emittierten NO₂ an der Messstation nicht möglich, da auch sekundäres NO₂ (Photochemie) mitbestimmt wird:


NO + O₃; (RO₂)
$$\rightarrow$$
 NO₂ + O₂; (RO) ohne RO₂: "Leigthon" NO₂ + Licht + O₂ \rightarrow NO + O₃

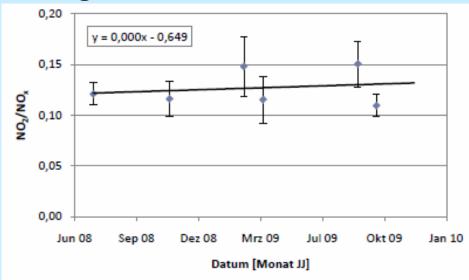
- O Keine RO_2 -Chemie; d. h. O_3 -Hintergrund (HG) konstant: $Ox = (NO_2/NO_x)_{direkt} * NO_x + O_3 (HG)$; mit $Ox = NO_2 + O_3$
- Auftragung von Ox gegen NO_x
- O gute Korrelation bei hoher Variation in NO_x

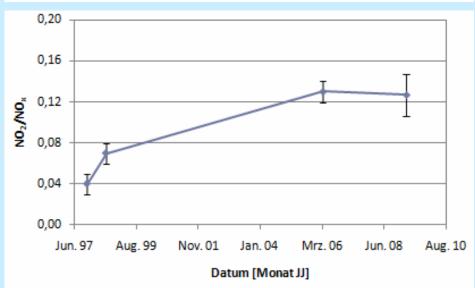
Umweltseminar 20.05.2014

- O Annahmen: O₃ (HG) konstant, hohe NO_x-Variation sind zur morgendlichen "Rush-Hour" (5:00 – 8:00 Uhr) erfüllt
- Starke Antikorrelation f
 ür NO und O₃
- Schnelle sekundäre NO₂-Bildung
- O Ox vs NO_x
- $(NO_2/NO_x)_{direkt} = 0.12 \pm 0.03;$
- d. h.12 % des gemessenen NO_x werden direkt als NO₂ emittiert

Umweltseminar 20.05.2014

- O (NO₂/NO_x)_{direkt} Trend für 2008 bis 2009
- Geringer Anstieg, im Mittel $(NO_2/NO_x)_{direkt} = 0.13 \pm 0.02$
- Vergleich mit anderen Messungen in Wuppertal


 $1997: 0.04 \pm 0.01$ $1998: 0.07 \pm 0.01$ $2006: 0.13 \pm 0.01$


2008 - 2009: 0.13 ± 0.02

- O Starker Anstieg seit 1997
- Einführung des Oxi-Kat;
 d. h. Reduzierung der HC- und "Partikel"-Emission
- Erhöhung der NO₂-Emission; (NO₂/NO_x)_{direkt} - Verhältnis

Umweltseminar 20.05.2014

Ergebnisse und Diskussion

Oxidations (Oxi)-Katalysator

ab 70iger Jahren für Benzinmotoren entwickelt

Kohlenwasserstoff (HC) oder Kohlenmonoxid (CO) werden zu CO₂ oxidiert

$$HC + O_2 / CO + O_2 \xrightarrow{Oxi-KAT} CO_2 + H_2O$$

und auch teilweise Partikel (PM₁₀)

Partikel (PM₁₀)
$$\xrightarrow{Oxi-KAT}$$
 CO₂ + H₂O

Heute bei Benzinmotoren durch den Dreiwege-Katalysator ersetzt

Umweltseminar 20.05.2014

Oxidations (Oxi)-Katalysator

bei Dieselmotoren als Dieseloxidations-Katalysator (DOC) heute noch häufig eingesetzt

$$HC + O_2 / CO + O_2 \xrightarrow{Oxi-KAT} CO_2 + H_2O$$

und auch teilweise Partikel (PM₁₀)

Partikel (PM₁₀)
$$\xrightarrow{Oxi-KAT}$$
 CO₂ + H₂O

Nachteil: Auch NO wird oxidiert

$$NO + O_2 \xrightarrow{Oxi-KAT} NO_2$$

→ Hoher NO₂ Anteil am NO_x

Dreiwege-Katalysator (Benzinmotoren)

HC + O₂ / CO + O₂
$$\xrightarrow{Oxi(\lambda > 1)}$$
 CO₂ + H₂O und auch NO_x $\xrightarrow{\text{Re }d(\lambda < 1)}$ NO_x

Lambda (λ)-Sonde regelt das Luft/Kraftstoffverhältnis

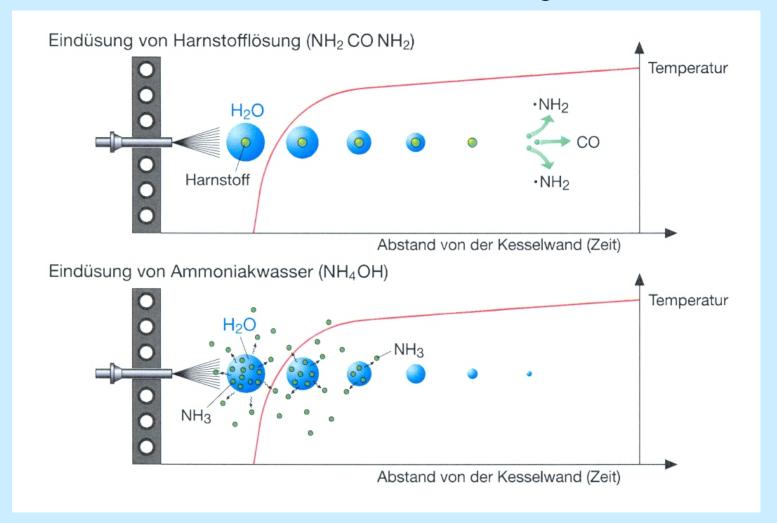
 λ = 1: Stöchiometrisches Verhältnis

 λ < 1: Luftmangel, "Fettes Gemisch"

 λ > 1: Luftüberschuss, "Magers Gemisch"

- O Dreiwege-Katalysator beim Dieselmotor, aber auch bei den neuen direkteinspritzenden Benzin-Magermotoren nur als "Oxi"-Katalysator möglich, das λ immer > 1 ist.
- → NO_x-Reduktion?
- → Lösung durch selektive katalytische Reduktion (SCR-Verfahren) mittel a) "Ammoniak"

6 NO + 4 NH₃
$$\xrightarrow{SCR-KAT(O_2)}$$
 5 N₂ + 6 H₂O


$$6 \text{ NO}_2 + 8 \text{ NH}_3 \xrightarrow{SCR-KAT(O_2)} 7 \text{ N}_2 + 12 \text{ H}_2\text{O}$$

"Ammoniak"-Quelle: Harnstoff ((NH₂)₂CO)

z. B. wässrige 32,5 % Harnstofflösung; AdBlue®

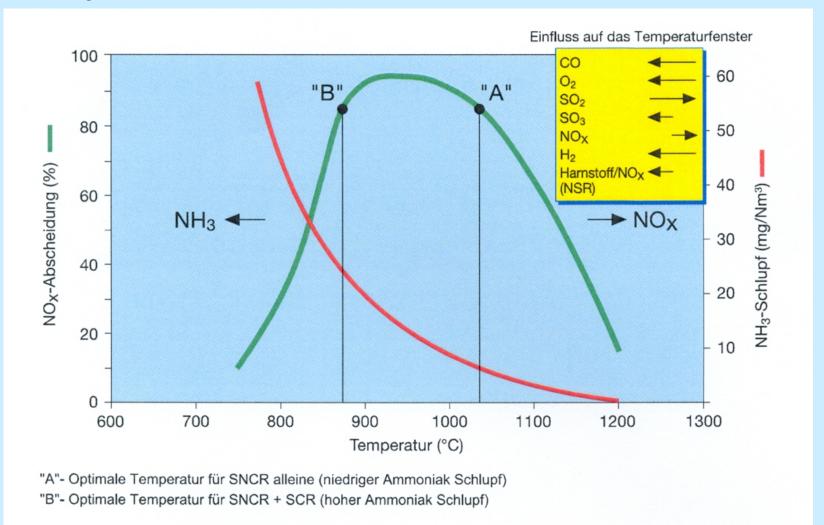
Umweltseminar 20.05.2014

O Harnstoff bzw. Ammoniak Eindüsung

Umweltseminar 20.05.2014

oder b) mittels Kohlenwasserstoffe im DeNOx-Katalysator

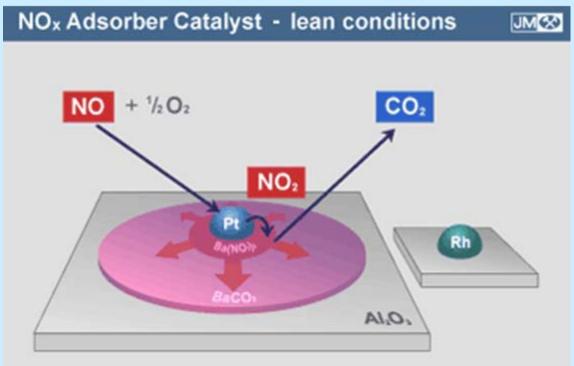
10 NO + 4 HC
$$\xrightarrow{SCR-KAT(CH)}$$
 5 N₂ + 2 H₂O + 4 CO₂


- → Nachteil:
 - nicht so leistungsfähig wie das NH₃-SCR-System

→ Vorteil: keine N₂O- und NH₃-Emission ("Schlupf")

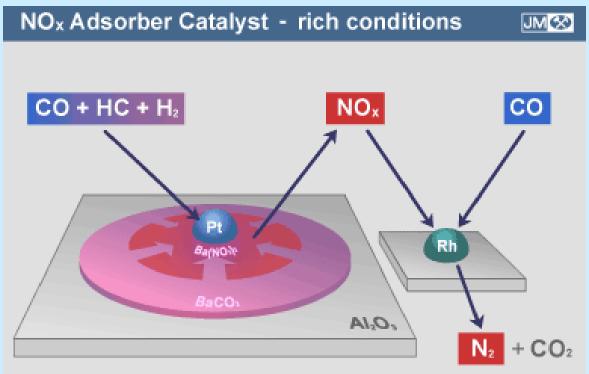
$$6 \text{ NO} + 4 \text{ NH}_3 \xrightarrow{SCR-KAT(O_2)} 5 \text{ N}_2\text{O} + 6 \text{ H}_2\text{O}$$

Umweltseminar 20.05.2014

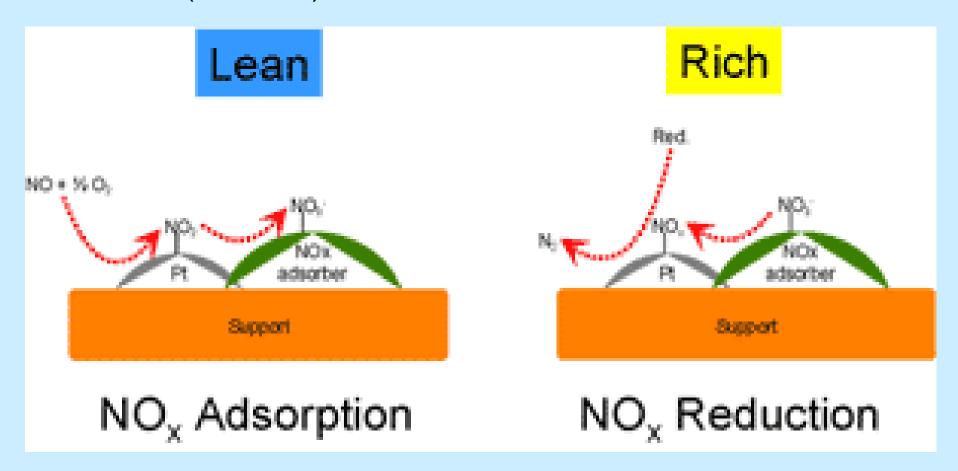

O NH₃- bzw. NO_x-Schlupf

Umweltseminar 20.05.2014

- Probleme wenn z.B. das SCR System nicht optimal läuft (Kaltstart)
- → Adsorber zur Speicherung von "NO_x"


$$NO \xrightarrow{Oxi(O_2)} NO_2 \xrightarrow{Oxi(O_2)} NO_3^- (BaCO_3)$$

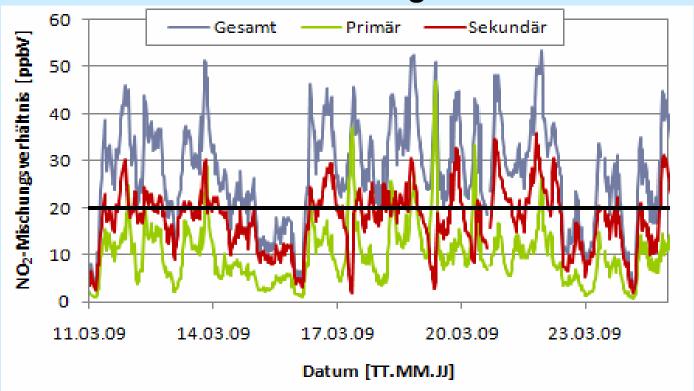
Umweltseminar 20.05.2014


- Probleme wenn z.B. das SCR System nicht optimal läuft (Kaltstart)
- → Desorption von NO₃- und Reduktion von "NO_x" zu N₂

$$NO_3^- \xrightarrow{Re d} NO_x \xrightarrow{Re d} N_2$$

Umweltseminar 20.05.2014

 Probleme wenn z.B. das SCR System nicht optimal läuft (Kaltstart)

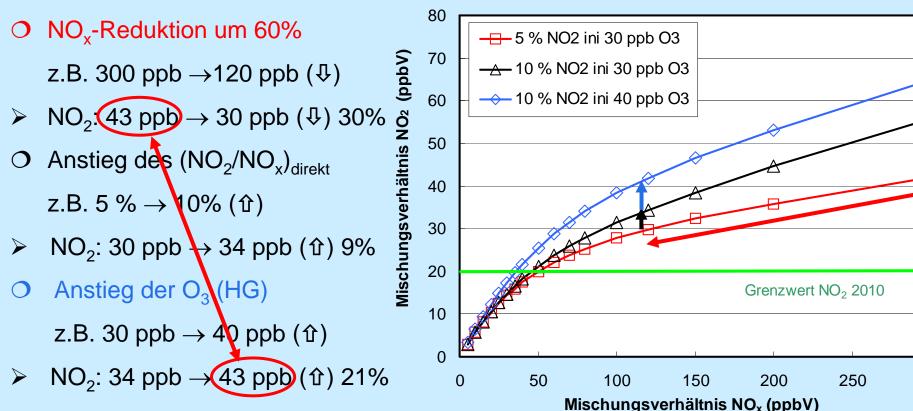

Umweltseminar 20.05.2014

- Starker Anstieg des (NO₂/NO_x)_{direkt} bei gesunkenem NO_x
- Ein Grund für stagnierende NO₂-Immissionswerte
- Ö Übereinstimmung mit Rabl und Scholz (2005, Baden-Württemberg; Palgren (2007, Kopenhagen); Air Quality Expert Group (2007, London) und Keuken (2009, Rotterdam)
- O Reduzierung des (NO₂/NO_x)_{direkt} ausreichend für die Einhaltung des NO₂-Grenzwertes?
- Derechnung des primär und sekundären NO₂-Menge mit Hilfe des (NO₂/NO_x)_{direkt}

Datum	NO ₂ Gesamt	Prim. NO ₂	Prim. NO ₂	Sek. NO ₂	Sek. NO ₂
	[ppbV]	[ppbV]	[%]	[ppbV]	[%]
Juli 08	18	5	28	13	72
November 08	17	7	40	10	60
März 09	25	9	36	16	64
April 09	26	6	23	20	77
September 09	27	9	33	18	67
Oktober 09	22	7	32	15	68

- O Hoher sekundärer Anteil (68 ± 6 %) und niedriger primärer Anteil (32 ± 6 %)
- Vergleich mit anderen Städten; z. B. Hagen, Graf-von-Galen-Ring (73 ± 12 % sekundär; 27 ± 12 % primär) sowie Stuttgart (50 sekundär; 50 % primär)

Umweltseminar 20.05.2014



- Senkung des primären Anteil auf 0% nicht ausreichend zur Einhaltung des NO₂-Grenzwertes (z. B. Wuppertal)
- Sekundärer Anteil maßgebend für eine effiziente NO₂-Reduzierung (z. B. Wuppertal)

Umweltseminar 20.05.2014

- Erklärung für den beobachten NO₂-Trend (NO₂→NO_x →)?
- Ja, durch einfache Modellrechnung:

Leigthon-Gleichgewicht ohne RO₂-Chemie, NO₂-Photolyse von 0,01 s⁻¹ bei Sonnenhöchststand

Umweltseminar 20.05.2014

Dr. rer. nat. Ralf Kurtenbach Fachbereich C Physikalische Chemie der Bergischen Universität Wuppertal 300


- O Allg. Aussage über effiziente NO₂-Reduzierung:
- \triangleright $(NO_2/NO_x)_{direkt} \Psi oder NO_x \Psi ?$
- O Hohes NO_x und NO₂

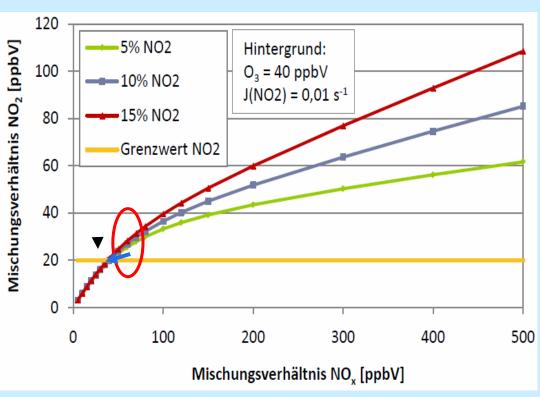
z.B. 200 ppb NO_x; 60 ppb NO₂

- O Reduktion des $(NO_2/NO_x)_{direkt}$ z.B. 15% → 5% (\$\Pi\$)
- NO₂: 60 ppb \rightarrow 44 ppb (\checkmark) 26%
- O Reduktion des NO_x

z.B. 200 ppb \rightarrow 40 ppb (\clubsuit) 80%

NO₂: 44 ppb \rightarrow 20 ppb (\clubsuit) 40%

Umweltseminar 20.05.2014

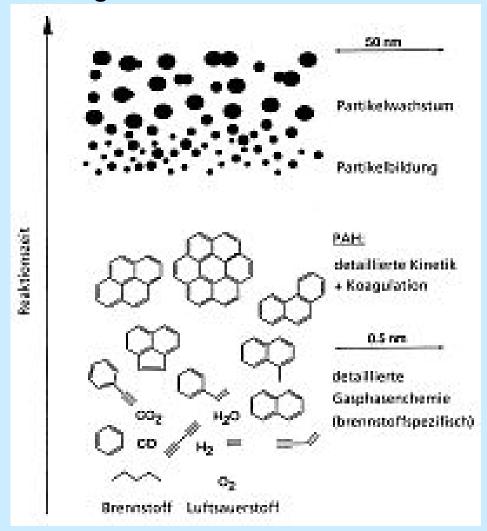

- O Allg. Aussage über effiziente NO₂-Reduzierung:
- \triangleright $(NO_2/NO_x)_{direkt} \Psi oder NO_x \Psi ?$
- O Niedriges NO_x und NO₂

z.B. 70 ppb NO_x; 30 ppb NO₂

- O Reduktion des $(NO_2/NO_x)_{direkt}$ z.B. 15% → 5% (♣)
- NO₂: 30 ppb → 28 ppb ($\sqrt[4]{7}$ %
- O Reduktion des NO_x

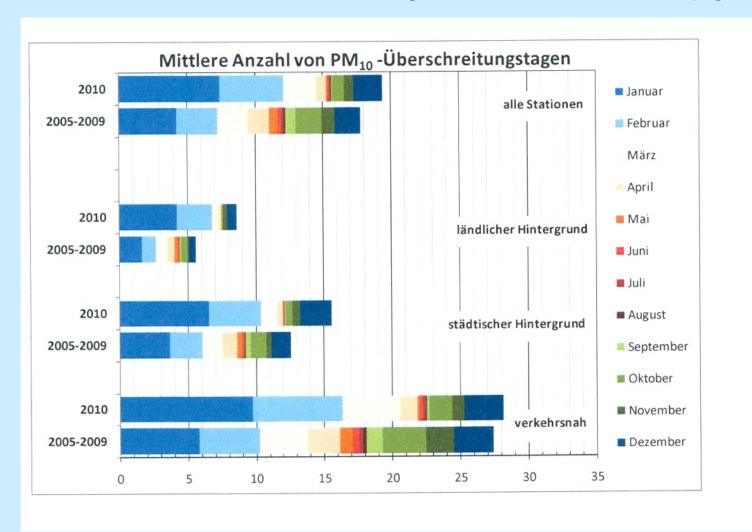
z.B. 70 ppb \rightarrow 40 ppb (\circlearrowleft) 43%

NO₂: 28 ppb → 20 ppb (\clubsuit) 26%



 $O_3 \sim 40 \text{ ppb} \rightarrow \text{wenn NO}_x > O_3 \rightarrow \text{nachts ca. 40 ppb NO}_2$

Umweltseminar 20.05.2014


- O Partikel PM₁₀ (Durchmesser < 10 μm) auch als Feinstaub bezeichnet sind gesundheitsschädlich
- PM₁₀: Ab 2005 niedriger EU-Jahresmittelwert (Grenzwert) von 40 μg/m³, bzw. max. 35 Überschreitungen des Tagesmittelwertes von 50 μg/m³ pro Jahr
- O Russbildung (PM₁₀) bei der "unvollständigen" Verbrennung von fossilen Energieträger (z. B. Benzin oder Diesel)

O Russbildung

Umweltseminar 20.05.2014

Mittlere Anzahl der PM10-Tagesmittelwerte > 50 μg/m³

Umweltseminar 20.05.2014

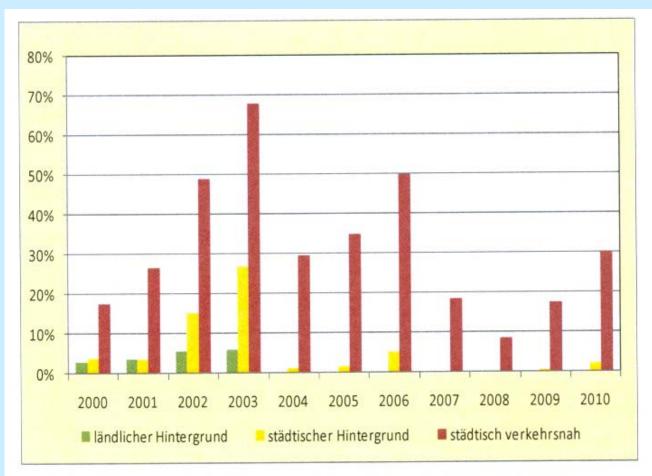
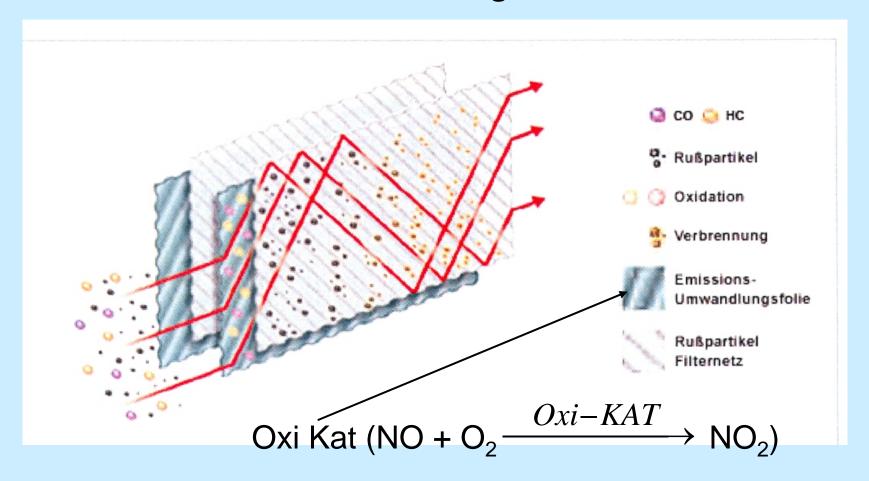


Abbildung 1: Prozentualer Anteil der Stationen in der jeweiligen Stationsklasse "ländlicher Hintergrund", "städtischer Hintergrund" und "städtisch verkehrsnah" mit PM_{10} -Tagesmittelüberschreitungen im Zeitraum 2000 bis 2010.

Umweltseminar 20.05.2014

- O Im Jahr 2012 wurde an ca. 13% aller Messstationen an mehr als 35 Tagen der Tagesgrenzwertes von 50 μg/m³ (UBA) überschritten.
- Lösung durch Partikelfilter
- → Partikelfilter des Typs "Wandstromfilter" oder Dieselpartikelfilter; geschlossenes Systems und des Typs "Durchflussfilter" oder Partikelkatalysator; offenes System
- Wandstromfilter müssen zyklisch regeneriert werden
 C + O₂ CO₂ (sehr hohe Temperatur)
 C + O₂+ Additiv CO₂ (mäßige
 Temperatur), z.B. FAT-Technik bei Peugeot

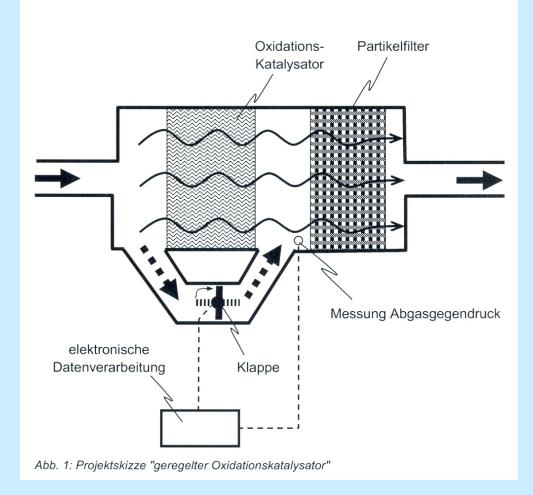
Umweltseminar 20.05.2014


O Katalytische Regeneration mittel NO₂

$$C + 2 NO_2 \xrightarrow{KAT350-500^{o}C} N_2 + CO_2$$

Filter wird als "coated" DPF bzw. CSPF (Catalysed Soot Particle Filter) bezeichnet, Oxi-Kat zur NO₂-Erzeugung notwendig. Nachteil: NO₂-Schlupf, da mit NO₂ Überschuss gearbeitet wird.

O Partikelkatalysatoren werden kontinuierlich regeneriert, daher auch als "Continuous Regenerating Trap" CRT-Filter bezeichnet, Oxi-Kat notwendig und auch ein NO₂-Schlupf vorhanden


$$C + NO_2 \xrightarrow{KAT350-500^{o}C} N_2 + CO_2$$

Continuous Regenerating Trap" CRT-Filter

Umweltseminar 20.05.2014

NO₂-optimierter Oxidationskatalysator

Umweltseminar 20.05.2014

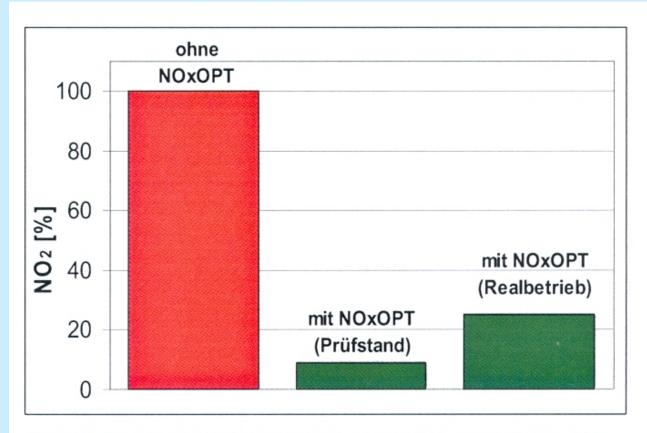
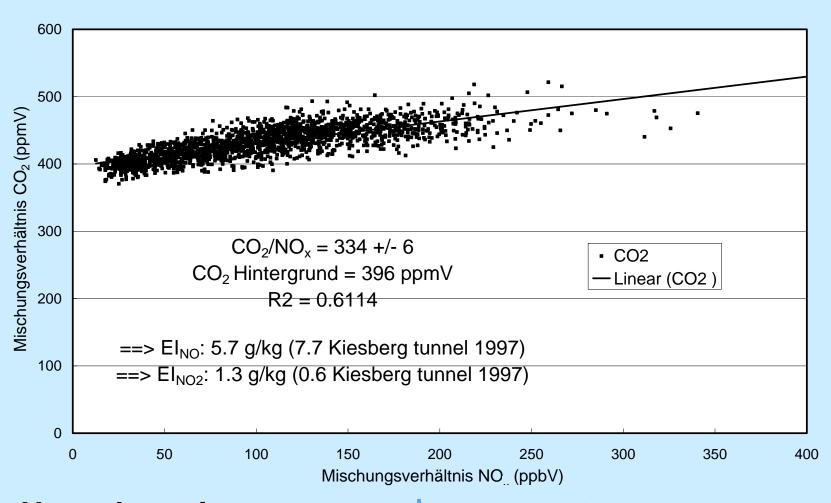


Abb. 3: Durch Abgasbehandlung zusätzlich generiertes NO2

Der durch den KRP verursachte NO₂-Überschuss wurde mit NOxOPT auf dem Prüfstand um 90% und im nichtoptimierten Realbetrieb auf einem Linienbus um immerhin 75% gesenkt.

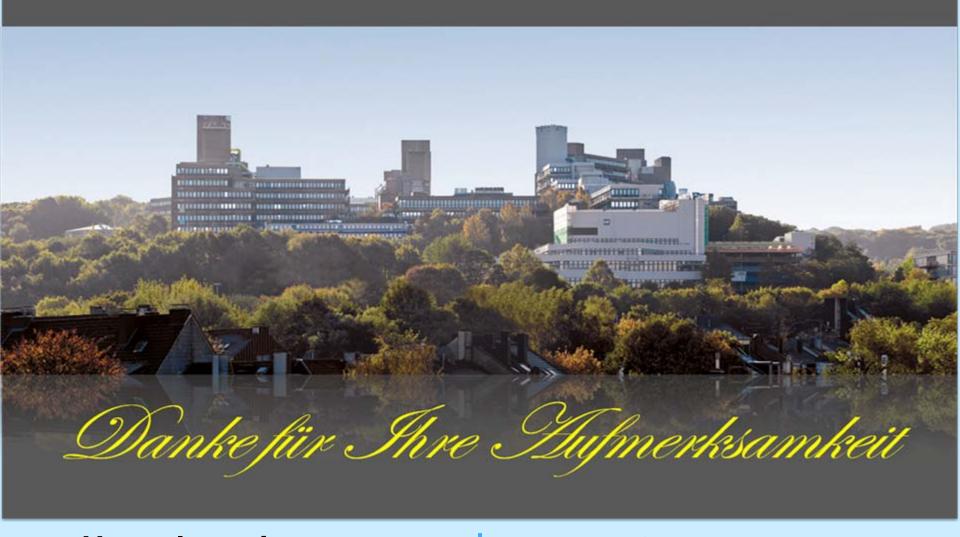
Umweltseminar 20.05.2014


- O Bestimmung von Emissionsindex EI_x d. h. die Masse (g) einer emittierten Komponenten X pro 1 Kg verbranntem Treibstoff
- → Bestimmung des Emissionsverhältnis ER_X mit

 $ER_X = \Delta [X] / \Delta [CO_2]$ (mol/mol) aus der Steigung der Auftragung von [X] (mol) gegen $[CO_2]$ (mol)

 $ER_X * M_X/M_{CO2} = \Delta [X] / \Delta [CO_2] (g/g); M = Molmasse (g/mol)$

 $EI_X = ER_X$ (g/g) * 3200 g [CO₂], da 1 kg Treibstoff bei der vollständigen Verbrennung rund 3200 g CO₂ liefert!


Auftragung von [NO] (mol) gegen [CO₂] (mol)

Umweltseminar 20.05.2014

BERGISCHE UNIVERSITÄT WUPPERTAL

Umweltseminar 20.05.2014