

A First Principles Model of Differential Ion Mobility: The Effect of Ion-Solvent Clustering

SCP 2019, University of Waterloo

1

Alexander Haack^a, Jeff Crouse^b, Femke-Jutta Schlüter^a, Thorsten Benter^a, W. Scott Hopkins^b

> ^a University of Wuppertal, Germany ^b University of Waterloo, ON, Canada

DIFFERENTIAL MOBILITY SPECTROMETRY (DMS)

DMS as pre-filter for mass spectrometry

• Understand the field dependency of K(E)

DIFFERENTIAL MOBILITY SPECTROMETRY

In N₂ with 1.5% v/v solvents

J. Am. Soc. Mass Spectrom. 25, 1583-1591 (2014).

MODELING OF MOBILITY: COLLISION CROSS SECTION

Mason-Schamp eq.

$$K = \frac{3}{16} \left(\frac{2\pi}{\mu k_B T} \right)^{1/2} \frac{ze}{N\Omega(T)}$$

4

MobCal-MPI (from Hopkins lab)

$$\Omega(T) = \frac{1}{8\pi^2} \int_0^{2\pi} d\theta \int_0^{\pi} \sin\varphi \, d\varphi \int_0^{2\pi} d\gamma \, \frac{\pi}{8} \left(\frac{\mu}{k_B T}\right)^3$$
$$\times \int_0^{\infty} \exp\left(-\frac{\mu v_r^2}{2k_B T}\right) v_r^5 \, dv_r \int_0^{\infty} 2b(1 - \cos(\chi(\theta, \varphi, \gamma, v_r, b))) \, db$$

Analyst **144**, 1660–1670 (2019). *J. Phys. Chem.* **100**, 16082–16086 (1996). *Chem. Phys. Letters* **261**, 86–91 (1996).

MODELING OF MOBILITY: HARD-SPHERE SCATTERING

Mason-Schamp eq. only valid in zero-field limit

$$K_{1T} = \frac{3}{16} \left(\frac{2\pi}{\mu k_B T}\right)^{1/2} \frac{ze}{N\Omega(T)}$$

- One improvement: two-temperature theory $T \rightarrow T_{eff}$
 - Ions have different velocity distribution

$$K_{2T} = \frac{3}{16} \left(\frac{2\pi}{\mu k_B T_{eff}}\right)^{1/2} \frac{ze}{N\Omega(T_{eff})} \qquad T_{eff} = T + \frac{m_b v_d^2}{3k_B}$$

Mason & McDaniel (1988).

MODELING OF MOBILITY: CLUSTERING

1.) DETERMINE CLUSTER STRUCTURES

 We need the geometry and partial charges for the MobCal-MPI input

2.) CALCULATE Ω FOR DIFFERENT T_{eff}

• Fit the data to
$$\Omega(T_{eff}) = a \cdot T_{eff}{}^b + c$$

Cluster	T range in [K]	<i>a</i> in [Ų/K⁻♭]	b	<i>c</i> in [Ų]
Me₄N⁺	298 – 1300	6250.7	-0.7587	23.15
[Me ₄ N+ACE]+	298 – 900	6006.8	-0.7619	49.63
[Me ₄ N+(ACE) ₂] ⁺ a	298 – 700	4284.0	-0.6903	68.90
[Me ₄ N+(ACE) ₂] ⁺ _b	298 – 700	4751.3	-0.7152	66.92
[Me ₄ N+(ACE) ₂] ⁺ c	298 – 700	4697.6	-0.7073	65.64
[Me ₄ N+(ACE) ₂] ⁺ d	298 – 700	4543.0	-0.6911	69.46
[Me₄N+ACN]⁺	298 – 900	5956.0	-0.7719	44.63
[Me ₄ N+(ACN) ₂] ⁺ a	298 – 700	4556.2	-0.7227	61.95
[Me ₄ N+(ACN) ₂] ⁺ _b	298 – 700	4928.9	-0.7139	61.88
[Me ₄ N+(ACN) ₂] ⁺ c	298 – 700	4380.7	-0.6952	56.05
[Me ₄ N+(ACN) ₃] ⁺ a	298 – 700	3725.6	-0.6739	77.73
[Me ₄ N+MeOH] ⁺	298 – 900	5601.3	-0.7481	36.56
[Me ₄ N+(MeOH) ₂] ⁺ a	298 – 700	4076.4	-0.6894	44.77
[Me ₄ N+(MeOH) ₂] ⁺ _b	298 – 700	5367.5	-0.7467	50.25
[Me ₄ N+(MeOH) ₂] ⁺ c	298 – 700	5690.0	-0.7479	50.61

3.) CALCULATE ACTUAL T_{eff} FOR PARTICULAR E

Use Mason-Schamp and two-temperature theory self-consistently

$$v_d = \frac{3}{16} \left(\frac{2\pi}{\mu k_B T_{eff}} \right)^{1/2} \frac{ze}{\Omega(T_{eff})} \cdot \frac{E}{N}$$
$$T + \frac{m_b v_d^2}{3k_B} = T_{eff}$$

For examination, see Poster **5(a)**: How hot are your ions in Differential Mobility Spectrometry?

4.) CALCULATE CLUSTER POPULATION

Modified version of *superposition approximation*

$$Z_{1} = \left(\frac{[M]}{N}\right)^{n_{1}} Q_{1}(T_{1})Q_{M}(T)^{\tilde{n}-n_{1}}$$

$$P_{i} = \frac{Z_{i}}{\sum_{i} Z_{i}}$$

$$Z_{i} = \left(\frac{[M]}{N}\right)^{n_{i}} Q_{i}(T_{i})Q_{M}(T)^{\tilde{n}-n_{i}} \cdot \exp\left(-\sum_{j=2}^{i} \frac{\varepsilon_{0,j} - \varepsilon_{0,j-1}}{k_{B}T_{j-1}}\right) \text{ for } i \ge 2$$

Right: Mobility increases with field strength (Type A)!

5.) VARY THE FIELD STRENGTH \rightarrow ALPHA-FUNCTIONS

• For each *E*, calculate cluster distribution and ensemble mobility

• Cluster size decreases \rightarrow mobility increases (Type A)!

6.) DETERMINE DISPERSION PLOTS

$$E(t) = \frac{D}{d} \cdot \left(\frac{2}{3}\sin(\omega t) + \frac{1}{3}\sin\left(2\omega t - \frac{\pi}{2}\right)\right) \qquad SV_{pp} = \frac{3}{2}D$$
$$CV = -\frac{\langle \alpha(E(t)) \cdot E(t) \rangle_{\text{wf}}}{1 + \langle \alpha(E(t)) \rangle_{\text{wf}} + \langle \alpha'(E(t)) \cdot E(t) \rangle_{\text{wf}}} \cdot d$$

Int. J. Mass Spectrom. **128**, 143–148 (1993) *Int. J. Mass Spectrom.* **285**, 149–156 (2009)

6.) DETERMINE DISPERSION PLOTS

Type D dispersion plots: Tricarbastannatrane cation

see Poster **10(b)**: Understanding non-traditional differential mobility behavior: a case study of the tricarbastannatrane cation, N(CH₂CH₂CH₂)₃Sn⁺

CONCLUSION

ACKNOWLEDGEMENT

Dr. Jeff Crouse

Physical and Theoretical

Christian Ieritano

QUESTIONS?

AND HOW DOES Ω CHANGE WITH T_{eff} ?

- CCS is function of (effective) temperature
 - Relative velocity distribution changes (included in MobCal-MPI)
 - Internal energy and thus vibrational broadening increases
- Calc CCS at different temperatures for
 - Rigid equilibrium structure
 - 100 sample geometries from a MD simulation at that temperature
- Fit the data to $\Omega(T_{eff}) = a \cdot T_{eff}{}^b + c$
- For stiff molecules, fitting functions are the same
- For floppy ones, differences might be significant

(a) Me₄N⁺

1

HOW MUCH IS THERE OF EACH CLUSTER?

- So far, harmonic-superposition approximation used
 - Assumes equilibrium for the given field strength E
 - Can be computed from First Principles

$$Z_{i} = \left(\frac{[M]}{N}\right)^{n_{i}} Q_{i}(T_{eff}) \exp\left(-\frac{\varepsilon_{n} - \varepsilon_{ref}}{k_{B}T}\right) \qquad P_{i} = \frac{Z_{i}}{\sum_{i} Z_{i}}$$
$$Q_{i}(T_{eff}) = Q_{[A+n_{i}M]^{+}}(T_{eff}) \cdot Q_{M}(T)^{n_{max}-n_{i}}$$

$$\varepsilon_{i} = [\varepsilon_{elec} + \varepsilon_{ZPE}]_{[A+n_{i}M]^{+}} + (n_{max} - n_{i})[\varepsilon_{elec} + \varepsilon_{ZPE}]_{M}$$

$$Q_{A^{+}} \cdot Q_{M}$$

$$Q_{[A+M]^{+}}$$

$$\varepsilon_{0}$$

 $[A + (n-1)M]^+ + M \rightleftharpoons [A + nM]^+$

Ε

 $P_i = \frac{Z_i}{\sum_i Z_i}$

HOW MUCH IS THERE OF EACH CLUSTER?

 $\xrightarrow{T_A \neq T_B} Z = Z_A + Z_B = Q_A(T_A) + Q_B(T_B) \exp\left(-\frac{\varepsilon_B}{kT_A}\right)$

- Think about $A \rightleftharpoons B$ where $T_A = T_B$
- Superposition approximation:

$$Z = Z_A + Z_B = \int_{\varepsilon_A = 0}^{\infty} \rho_A(\varepsilon) \exp\left(-\frac{\varepsilon}{kT}\right) d\varepsilon + \int_{\varepsilon_B}^{\infty} \rho_B(\varepsilon) \exp\left(-\frac{\varepsilon}{kT}\right) d\varepsilon$$
$$= Q_A(T)$$
$$Z_B = \exp\left(-\frac{\varepsilon_B}{kT}\right) \int_{\varepsilon_B}^{\infty} \rho_B(\varepsilon) \exp\left(-\frac{\varepsilon - \varepsilon_B}{kT}\right) d\varepsilon = \exp\left(-\frac{\varepsilon_B}{kT}\right) \int_{0}^{\infty} \rho_B(\varepsilon) \exp\left(-\frac{\varepsilon}{kT}\right) d\varepsilon$$
$$= Q_B(T)$$
$$Z = Z_A + Z_B = Q_A(T) + Q_B(T) \exp\left(-\frac{\varepsilon_B}{kT}\right)$$

HOW MUCH IS THERE OF EACH CLUSTER?

- For energy sorted minima (i.e. $\varepsilon_{i+1} > \varepsilon_i$)
- Weight Q_i with *all* scaling factors which have j < i

$$Z_1 = \left(\frac{[M]}{N}\right)^{n_1} Q_1(T_1) Q_M(T)^{\tilde{n}-n_1}$$
$$Z_i = \left(\frac{[M]}{N}\right)^{n_i} Q_i(T_i) Q_M(T)^{\tilde{n}-n_i} \cdot \exp\left(-\sum_{j=2}^i \frac{\varepsilon_{0,j} - \varepsilon_{0,j-1}}{k_B T_{j-1}}\right) \quad \text{for } i \ge 2$$

Reduces back to normal superposition approx. if all T_i are equal

 $P_i = \frac{Z_i}{\sum_i Z_i}$

6.) DETERMINE DISPERSION PLOTS

Variation of modifier concentration and temperature

DISCUSSION

Problem	Solvable?	Ideas	Literature
Two-temperature theory is only an approximation	Yes	Include higher order terms, or use momentum- transfer theory	Anal. Chem. 84 (22), 9782-9791 (2012) Analyst 141 (23), 6396-6407 (2016)
Vibrational broadening and inelastic collisions are neglected	Yes	Perform actual MD simulations for CCS determination	IMoS 2.0 <i>J. Chem. Phys.</i> 148 (6), 064109 (2018)
Equilibrium at all time assumed (might not hold for fast varying fields)	Yes	Instead of (weird) superposition approximation, calculate rate constants (RRKM theory) and perform actual kinetic computations	MultiWell J. Chem. Phys. 106 (11), 4499-4508 (1997) J. Am. Soc. Mass Spectrom. 8 (2), 103-115 (1997)
Contribution of solvent molecules (1.5% v/v) to CCS are neglected	Yes	Either modify MobCal-MPI or perform MD simulations for CCS determination including the solvents	
Partition functions are calculated with standard approximations (rough approx. for anharmonic clusters)	Yes	Perform anharmonic correction calculations (VPT2) Or use Quasi-Harmonic approximation (MD simulations have to be performed; can be used for CCS calcs as well)	J. Chem. Theory Comput. 8 (3), 1015-1036 (2012) J. Chem. Theory Comput. 12 (12), 5990-6000 (2016)
Account for coupling of all effects with reasonable effort	No	when was life ever easy?	